Perchè nel caso la sorgente utilizzata nell'esperimento "spari" particelle il fenomeno dell'interferenza non si verifica? Se spariamo elettroni, anche singolarmente, l'interferenza c'è sempre in quanto l'elettrone "interferisce con se stesso" ...ma perchè la particella no? ....e poi, tutte le particelle si comportano allo stesso modo? ...l'elettrone non è esso stesso una particella? Mario -
Caro lettore,
l'esperimento di Young a cui tu ti riferisci fu ideato ed eseguito all'inizio dell'800 per dimostrare la natura ondulatoria della luce. Si utilizzano per questo due fenditure di dimensioni sufficientemente piccole così da essere confrontabili con la lunghezza d'onda della luce incidente. In questo modo, ognuna delle due fenditure è assimilabile ad una sorgente luminosa coerente, ovvero con la stessa lunghezza d'onda della sorgente luminosa principale. Queste due sorgenti luminose coerenti daranno quindi luogo al fenomeno dell'interferenza, tipico dei fenomeni ondulatori, in cui la sovrapposizione delle due onde può essere costruttiva, nel caso in cui si sommino i due massimi delle oscillazioni, o distruttiva, nel caso in cui si sommino il massimo e il minimo delle oscillazioni. Per questo, se mettiamo uno schermo ad una certa distanza dalle due fenditure, osserveremo una sequenza di zone luminose e zone buie, detta figura di diffrazione. Questo esperimento sembrava quindi indicare la morte definitiva dell’ipotesi della natura corpuscolare della luce di cui Newton fu il primo assertore.
Ma all'inizio del '900 alcuni fenomeni, in particolare l'effetto fotoelettrico, misero di nuovo in discussione la natura ondulatoria della luce. La spiegazione dell'effetto è del 1905 e si deve ad Einstein, che per questo vinse il Nobel. Nella sua spiegazione, quando una particella di luce (il fotone), colpisce un elettrone su una superficie metallica, questa può essere assorbita totalmente dall'elettrone. L'energia cinetica così acquistata dall'elettrone gli permette di sfuggire dal metallo, per cui si osserva una emissione di elettroni dalla superficie.
Quindi, secondo la meccanica quantistica, la luce si poteva comportare come un'onda o come una particella a seconda del fenomeno osservato. Questo strano e isolato comportamento della luce, portò Louis De Broglie a ipotizzare che tutte le particelle avessero sia un comportamento corpuscolare che ondulatorio. De Broglie associò quindi ad ogni particella una lunghezza d'onda caratteristica, detta lunghezza d’onda di De Broglie, inversamente proporzionale alla propria quantità di moto (il prodotto della massa per la velocità).
L’ipotesi di De Broglie fu verificata sperimentalmente pochi anni dopo, nel 1927, quando Davisson e Germer osservarono figure di diffrazione quando un cristallo di nichel era attraversato da un fascio di elettroni. Da questa osservazione, l’esperimento di Young della doppia fenditura venne ripetuto anche con fasci di particelle ritrovando figure di diffrazione simili quelle dell’esperimento originale fatto con la luce. Concludendo, secondo la meccanica quantistica ogni particella ha una doppia natura onda-corpuscolo e questa è ben verificata dagli esperimenti di diffrazione con doppia fenditura. Il fenomeno dell’interferenza si osserva se le dimensioni delle fenditure, o in generale di un ostacolo, sono confrontabili con la lunghezza d’onda di De Broglie associata alla particella oggetto di studio.
Marco Cinausero, fisico
a cura di Anna Maragno
«Dacché la terra ebbe degli uomini, il cielo ebbe degli ammiratori»1
Il cielo paleolitico
Nella prima tappa del nostro viaggio, dopo alcune considerazioni introduttive circa il rapporto degli uomini delle origini con il cielo, approfondiremo alcuni tra i più importanti reperti che, secondo gli studiosi, potrebbero consistere in calendari lunari e in mappe stellari di epoca paleolitica.
Figura 1. Particolare della Sala dei Tori presso le grotte di Lascaux (Francia). Sopra la spalla dell’uro in primo piano è individuabile l’ammasso delle Pleiadi. Secondo alcuni studiosi, la testa dell’animale potrebbe “nascondere” la costellazione del Toro, con le corna disposte come le Iadi e l’occhio dell’uro corrispondente ad Aldebaran, che rappresenta l’“occhio” del Toro nella costellazione. I punti attorno indicherebbero le altre stelle della costellazione. Si è ipotizzato che i quattro punti allineati, sulla schiena dell’uro a sinistra, riproducano una parte della costellazione di Orione.
Occhi al cielo
Non sappiamo quando l’uomo abbia ammirato, per la prima volta, il cielo stellato. Secondo Ovidio (43 a.C. - 17 d.C.), sarebbe stato lo stesso Opifex rerum, nell’atto stesso della creazione dell’uomo, a “sollevargli il viso”, così che posasse gli occhi sulla volta celeste e fissasse, eretto, il firmamento: os homini sublime dedit caelumque videre / iussit et erectos ad sidera tollere vultus (Metamorphoses, 1, 85-86). Ma possiamo supporre che l’uomo, sin dalla sua comparsa sulla Terra, abbia spesso rivolto lo sguardo a quel cielo che Ovidio vuole “effervescente di stelle” (Metamorphoses, 1, 71). Quella visione certamente non mancava di ispirare perenne ammirazione, forse timore e, soprattutto, meraviglia. Aristotele (384-383 a.C. - 322 a.C.) era convinto che fosse proprio quest’ultima a generare nell’uomo il desiderio di conoscenza. Il “meravigliarsi”, dunque, deve aver acceso una profonda curiosità nei primitivi al cospetto di questa entità sconfinata e misteriosa, spingendoli ad osservarla e a porsi interrogativi.
Caelum et Terra
Il cielo si presentava all’uomo come una realtà ordinata e affidabile: il Sole riappariva ogni giorno, la Luna attraversava diverse fasi fino a completare un ciclo, le stelle ritornavano in determinate posizioni con regolarità. I movimenti degli oggetti celesti di cui l’uomo era testimone, che dovevano apparirgli quali “danze” silenziose e precise, lo avevano indotto ad attribuire al cielo i caratteri dell’imperturbabilità, della perfezione, dell’inaccessibilità e della leggerezza. La terra, al contrario, luogo incerto e in perpetuo cambiamento, era percepita come solida, statica, pesante, mutevole. “Terra” e “Cielo” si presentavano come mondi separati e caratterizzati da due nature intrinsecamente diverse. Il cielo acquisiva, in una simile visione, una posizione di preminenza rispetto alla terra e diveniva, così, inevitabilmente, la dimora della divinità. Tale convinzione, suggerita dall’osservazione e giustificata da ciò che oggi chiameremmo il “senso comune”, conobbe una longevità sorprendente nella storia del pensiero occidentale. Questa idea, che già in origine dovette essere universalmente condivisa, trovò più tardi consacrazione negli studi filosofici. Si radicò in profondità (complice l’aristotelismo, che imperò per quasi due millenni); soltanto Isaac Newton riuscì ad estirparla del tutto, alle soglie del XVIII secolo.
Torniamo, dunque, all’era preistorica. L’osservazione del cielo, a quei tempi, non si limitava a soddisfare esigenze di mera “contemplazione” estetica o spirituale (quasi sfumata in un “Sublime” ante litteram), ma rivestiva importanza fondamentale per la vita quotidiana. Il ritorno del Sole nel cielo ogni giorno, ad esempio, era un evento percepito come fondamentale per la sopravvivenza da parte dell’uomo nomade primitivo, ed era dunque salutato con gioia e con riconoscenza (ben si comprende, quindi, la presenza di divinità solari nei culti arcaici). Quando, fra i 10.000 e gli 8.000 anni fa, l’uomo abbandonò il nomadismo, basato sulla caccia e sulla raccolta, a favore di un’agricoltura stanziale, anche il suo rapporto con il cielo mutò. Le osservazioni divennero, di necessità, più precise: il ciclo delle stagioni, infatti, dettava i tempi della coltivazione della terra. All’uomo ormai sedentario diveniva inoltre evidente come il Sole sorgesse e tramontasse in punti diversi dell’orizzonte nel corso dell’anno, per poi ritornare ciclicamente nella stessa posizione.
La regolarità temporale nei movimenti degli oggetti celesti condusse gli uomini preistorici a basare su tali moti le prime misurazioni del tempo (per questi profili, rimandiamo al percorso dell’anno 2021, dal titolo «Horas doceo. Storia della misurazione del tempo»).
Qualche (necessario) riferimento temporale
Come si può procedere per comprendere quali spiegazioni riguardanti il cielo siano state sviluppate in età preistorica, ossia, per definizione, in quel periodo della storia umana in cui la scrittura era ancora sconosciuta? Ebbene, in mancanza di fonti documentarie, non resta che affidarsi alle uniche testimonianze in nostro possesso di quella lontana epoca: i reperti e i siti archeologici. Precisiamo che, per quanto ci riguarda, seguiremo la ben nota e condivisa periodizzazione storiografica che suddivide la Preistoria in Paleolitico (2,5 milioni di anni fa – 10.000 anni fa), Mesolitico (10.000 anni fa – 8.000 anni fa), Neolitico (8.000 anni fa – 3.500 anni fa). Nel periodo finale del Neolitico l’uomo iniziò a lavorare il rame: ebbe così avvio l’Età dei metalli, entro i cui confini avviene il passaggio dalla Preistoria alla Storia.
Le prime tappe del nostro percorso saranno dedicate all’approfondimento dei più remoti tra i cieli antichi. È questo il campo proprio della disciplina denominata archeoastronomia, ossia della scienza che si occupa di studiare le conoscenze astronomiche dei popoli preistorici e protostorici e, più in generale, il loro rapporto con il cielo.
Negli ultimi decenni, in particolare in ambito europeo, importanti scoperte archeologiche hanno permesso di acquisire nuove informazioni concernenti le civiltà del Neolitico e della prima Età dei metalli. Lo studio di numerosi reperti ha dimostrato che il sapere matematico ed astronomico allora raggiunto era ben più raffinato di quanto si fosse ipotizzato.
Calendari lunari paleolitici
Una delle testimonianze più risalenti è costituita da un “calendario lunare” proveniente dal Paleolitico Superiore. Si tratta dell’osso di Abri Blanchard, datato 33.000 anni fa, scoperto agli inizi del secolo scorso presso la località omonima, nella Dordogna (Francia). Il frammento osseo apparteneva all’ala di un’aquila e reca incisioni riconducibili, secondo l’archeologo Alexander Marshack, ad un tentativo di rappresentare i cicli lunari. Gli intagli, infatti, sono caratterizzati da forme che ricordano le diverse fasi, crescenti e calanti, della Luna.
Figura 2. In alto, l’osso di Abri Blanchard; in basso, un ingrandimento delle incisioni sul lato destro del reperto.
Più problematica è l’identificazione delle incisioni sull’osso di Ishango, rinvenuto nel 1960 presso il Lago Edoardo, al confine tra Uganda e Congo. Il reperto, un osso di babbuino di circa 21.000 anni fa, presenta una scaglia di quarzo fissata ad un’estremità e una serie di intagli distribuiti in tre colonne. Quanto al significato delle incisioni, gli studiosi hanno avanzato diverse interpretazioni. Secondo Marshack, la disposizione delle incisioni in determinati raggruppamenti farebbe supporre che possa trattarsi di un “registro” in cui erano raccolte osservazioni di fasi lunari. Un ulteriore elemento a favore di questa tesi è costituito dall’abitudine, propria di alcune tribù indigene della zona e attestata fino a tempi piuttosto recenti, di utilizzare ossa come supporto materiale per calendari lunari. Altri esperti hanno interpretato diversamente i segni sul reperto, ipotizzando che possa trattarsi di un primo tentativo di elaborazione di un sistema numerico.
Mappe stellari dell’ultima era glaciale
Altre testimonianze del cielo paleolitico si ritrovano nelle pitture rupestri all’interno delle grotte di Lascaux, situate nella Francia sud-occidentale, e di quelle di El Castillo, nel nord della Spagna. Queste caverne non rappresentano soltanto siti di immenso valore scientifico ed archeologico, ma costituiscono una prova dell’eccezionale qualità artistica dei gruppi umani paleolitici, tanto elevata da destare stupore e profonda emozione anche nei moderni visitatori (tra questi, Pablo Picasso, estasiato, pare abbia esclamato: «Non abbiamo inventato nulla!»).
Le grotte di Lascaux, ribattezzate da molti «la Cappella Sistina della Preistoria», furono scoperte nel 1940, in modo fortuito, da quattro ragazzi che percorrevano le colline della Dordogna a caccia di tesori. Seguendo il cane di uno dei quattro, che era caduto in una buca profonda, i giovani esploratori trovarono l’entrata della caverna. Alla luce di una lampada a petrolio, i loro occhi si posarono su pitture rimaste nell’oscurità per 17.000 anni, raffiguranti cortei di animali che, nelle parole dei ragazzi, «erano più grandi del normale e sembravano muoversi».
Nei segni che rappresentano più di 6.000 figure di animali (equini, cervi, bovini, bisonti, felini, uccelli, orsi e rinoceronti), di persone e simboli astratti, sembrano celarsi vere e proprie “mappe stellari” paleolitiche. Lo studioso Michael Rappenglük ha infatti ritenuto di poter riconoscere, nel disegno di un toro, di un uccello e di un uomo-uccello, la rappresentazione del Triangolo estivo, costellazione formata dalle stelle Vega, Deneb e Altair, gli astri più splendenti delle notti estive nell’emisfero boreale. Nella Sala dei Tori, invece, sopra la spalla di un uro è distinguibile, secondo Rappenglük, l’ammasso delle Pleiadi; le corna dell’animale seguirebbero la disposizione delle Iadi, nella costellazione del Toro; l’occhio dell’uro corrisponderebbe alla stella Aldebaran, coincidente con l’“occhio” del Toro nella medesima costellazione. Infine, i quattro punti sulla schiena dell’uro sulla sinistra potrebbero, forse, riprodurre parte della costellazione di Orione (Figura 1).
In una diversa zona delle grotte, infine, si rintraccerebbero due calendari lunari. Ai piedi di un cavallo selvaggio, infatti, si nota una sequenza di 29 punti scuri e allineati, probabilmente indicanti i giorni di un mese lunare. In una vicina parete, si trova un’altra sequenza consistente in una serie di 13 punti e, a seguire, un quadrato vuoto. In questo caso, i 13 punti potrebbero riferirsi alla metà di un ciclo lunare, mentre il quadrato vuoto potrebbe simboleggiare il quattordicesimo giorno, corrispondente al novilunio, quando l’emisfero visibile della Luna è totalmente in ombra (Figura 3).
Le grotte di Lascaux furono aperte al pubblico nel 1948: tuttavia, nell’arco di soli sette anni, l’aumento dell’anidride carbonica nell’ambiente interno, le alterazioni nella percentuale di umidità e nella temperatura delle sale e il conseguente avvento di licheni, muffe e funghi iniziarono ad arrecare danni alle pitture. Al fine di preservare l’integrità delle pitture, nel 1963 si decise di chiudere le grotte alle visite. Vent’anni dopo fu inaugurata Lascaux II, una prima e parziale replica delle pitture; nel 2012 prese avvio la mostra itinerante Lascaux III costituita da cinque riproduzioni e accolta, nel corso degli anni, da numerosi musei in diverse nazioni del mondo, per giungere a Lascaux IV, un museo che ospita una copia completa di tutte le aree dipinte delle grotte, aperto al pubblico dal 2016.
Figura 3. Grotte di Lascaux. I 13 punti, seguiti da un quadrato vuoto, potrebbero corrispondere alla metà di un ciclo lunare.
Lascaux non è un caso isolato. In questa sede ci limitiamo a citare la grotta di El Castillo, rinvenuta nel 1903 dall’archeologo Hermilio Alcalde del Río. All’interno, le pareti sono ricoperte di pitture e di incisioni rupestri di epoche differenti. Le più antiche sono databili al Paleolitico Superiore (circa 40.000 anni fa) e comprendono figure di animali e di uomini, accanto a rappresentazioni astratte. Una di queste pitture, più recente, risalente a circa 14.000 o 15.000 anni fa (di poco posteriore, quindi, alle raffigurazioni parietali di Lascaux) e situata al limite destro del cosiddetto «Panel de las Manos», è costituita da una serie di sette punti, disposti a semicerchio con la concavità rivolta verso l’alto. Benché non tutti gli studiosi concordino, Rappenglük ha sostenuto la suggestiva ipotesi che questa pittura raffiguri la costellazione della Corona Boreale, ben visibile nel cielo dell’emisfero boreale in primavera e in estate.
Seppur con tutte le precauzioni che gli archeoastronomi devono necessariamente adottare per evitare di trarre conclusioni affrettate, pare ormai affermata l’idea che le pitture delle grotte di Lascaux e di El Castillo possano rivelare planisferi celesti del Paleolitico Superiore, databili alla fase conclusiva dell’ultima era glaciale.
Testi e disegni originali di Anna Maragno. Non riprodurre senza autorizzazione.
Note
1. G. Leopardi, Storia dell’astronomia dalla sua origine fino all’anno MDCCCXIII, con uno scritto di A. Massarenti e un’appendice di L. Zampieri, BookTime, Milano, 2008, p. 367. La prima edizione dell’opera è leggibile in G. Cugnoni (a cura di), Opere inedite di Giacomo Leopardi, Max Niemeyer Editore, Halle, 1878-1880.
Fonti delle immagini
Figura 1: disegno originale di Anna Maragno, non riprodurre senza autorizzazione.
Figura 2: disegno originale di Anna Maragno, non riprodurre senza autorizzazione.
Figura 3: Codex, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons al link https://commons.wikimedia.org/wiki/File:%C3%89lan_aux_bois_2.jpg
Bibliografia e consigli di lettura
Bahn, P. G. (edited by), An Enquiring Mind. Studies in Honor of Alexander Marshack, Oxbow Books, Oxford, Oakville, 2009
Bersanelli, M., Il grande spettacolo del cielo. Otto visioni dell’universo dall’antichità ai nostri giorni, Sperling & Kupfer, Milano, 2018
Brooke-Hitching, E., L’Atlante del Cielo. Le mappe più belle, i miti e le meraviglie dell’universo, tr. it. a cura di V. Gorla, Mondadori, Milano, 2020
Cossard, G., Cieli perduti. Archeoastronomia: le stelle degli antichi, Utet, Torino, 2018
Hack, M., Domenici, V., Notte di stelle. Le costellazioni fra scienza e mito: le più belle storie scritte nel cielo, Sperling & Kupfer, Milano, 2018
Marschack, A., The Roots of Civilization. The Cognitive Beginnings of Man’s First Art, Symbol and Notation, Moyer Bell, Mt. Kisco, 1991
Proverbio, E., Archeoastronomia: alla ricerca delle radici dell’astronomia preistorica, Teti, Milano, 1989
Rappenglück, M. A., Ice Age People Find their Ways by the Stars: A Rock Picture in the Cueva de El Castillo (Spain) May Represent the Circumpolar Constellation of the Northern Crown (CrB), in «Migration & Diffusion. An international journal» 1, fasc. 2 (2000), pp. 15-28
Rappenglück, M. A., The Pleiades in the “Salle des Taureaux”, grotte de Lascaux. Does a rock picture in the cave of Lascaux show the open star cluster of the Pleiades at the Magdalénien era (ca 15.300 BC)?, in C. Jaschek, F. Atrio Barandela (a cura di), Actas del IV Congreso de la SEAC “Astronomia en la Cultura”, Universidad de Salamanca, Salamanca, 1997, pp. 217-225
L'INFN sviluppa molti progetti formativi per le scuole, sia a livello locale che nazionale. I progetti, che prevedono sempre sia moduli teorici che sperimentali, mirano a introdurre gli studenti nel mondo della fisica moderna attraverso l'acquisizione del metodo scientifico, il tutto coordinati e guidati dai propri ricercatori e tecnici. Rimandiamo a Collisioni.infn.it per una descrizione più accurata delle iniziative INFN per le scuole e i docenti e, tra i progetti nazionali più rilevanti, coordianti dal Comitato di Coordinamento della Terza Missione, segnaliamo:
Premio Asimov
Premio per libri di divulgazione scientifica che coinvolge studenti e studentesse delle scuole secondarie di II grado in veste di giurati e si propone di diffondere la cultura scientifica e l’amore per la scienza. Gli studenti leggono e recensiscono le opere in gara, selezionate da una commissione composta da docenti, ricercatori e altri esponenti del mondo della cultura.
Art&Science Across Italy
Progetto europeo che vuole avvicinare studenti e studentesse delle scuole secondarie di II grado alla ricerca scientifica usando il linguaggio dell’arte. I partecipanti realizzano opere d’arte ispirate ad argomenti scientifici trattati durante il percorso, e le espongono in mostre locali nelle diverse sedi. Le più significative vengono premiate e raccolte in una mostra nazionale.
Allestimento di una mostra del progetto Art&Science Across Italy
Lab2Go
Progetto per le scuole secondarie di II grado volto a promuovere l’idea di una scienza appresa attraverso la pratica e la condivisione, coinvolgendo gli studenti e le studentesse nella riqualificazione dei laboratori scolastici e nella formazione di altri studenti e docenti sulle esperienze realizzabili con gli strumenti a disposizione.
International Masterclass in Particle Physics
Serie di eventi dedicati a studenti e studentesse del triennio delle scuole secondarie di II grado organizzate a livello internazionale da IPPOG (International Particle Physics Outreach Group) e in Italia dall’INFN per coinvolgerli nella scoperta del mondo della fisica delle particelle attraverso i veri dati degli esperimenti.
Studenti alle prese con l'analisi dei dati del CERN durante le Masterclass in Particle Physics
OCRA
Il progetto raccoglie le attività di public engagement nel campo della fisica dei raggi cosmici portate avanti dall’INFN. OCRA propone un’ampia offerta di contenuti didattici online e organizza attività per le scuole e la cittadinanza e corsi per i docenti sul tema della fisica dei raggi cosmici.
Inspyre
Scuola di fisica in lingua inglese della durata di cinque giorni, rivolta a studenti e studentesse delle scuole secondarie di II grado di tutto il mondo e dedicata ai temi più caldi della fisica moderna. La scuola consiste in lezioni teoriche ed esperimenti di fisica moderna e contemporanea che gli studenti conducono sotto la supervisione dei ricercatori.
RadioLab
Progetto per le scuole secondarie che si propone di avvicinare le nuove generazioni al tema della radioattività attraverso lezioni ed esperienze di misura dirette, in modo che i giovani possano comprendere tutte le implicazioni, incluse quelle positive, intrinseche nell’impiego delle radiazioni ionizzanti.
Studenti del progetto RadioLab durante una presa dati
Dark
Progetto per le scuole che propone attività didattiche, come le masterclass sull'esperimento DarkSide, per coinvolgere gli studenti e le studentesse nella ricerca della materia oscura.
Fermi Masterclass
Giornate di studio nate per avvicinare le studentesse e gli studenti alla fisica delle astroparticelle, da scoprire attraverso seminari teorici e analisi dei dati del telescopio spaziale FERMI, in orbita dal 2008.
Art&Science Kids
Art&Science KIDS vuole avvicinare i più piccoli ai temi della fisica moderna, attraverso l’arte. È un concorso a tappe, per ogni tappa viene proposto un tema sotto forma di domanda, e viene pubblicato un breve video che spiega la fisica alla base dell’argomento, a partire da questo spunto le bambine e i bambini realizzano le loro opere d’arte.
INFN Kids
INFN Kids racconta la fisica ai bambini e alle bambine, rivolgendosi alle scuole primarie e secondarie di I grado. L’obiettivo è coinvolgere e appassionare alla fisica bambine, bambini, ragazze, ragazzi, e anche i loro genitori, attraverso giochi, attività, eventi e suggerimenti di lettura.
Se vuoi saperne di più su un argomento, manda una domanda alla redazione di ScienzaPerTutti, e noi selezioneremo un nostro esperto per risponderti!
Siamo lieti di rispondere alle vostre curiosità scientifiche. Non verranno prese in considerazione le richieste di risoluzione di esercizi di fisica, matematica e chimica !
Fai una domanda agli esperti della Scienza
Congratulazioni ad Alain Aspect, John Clauser e Anton Zeilinger, vincitori del Premio Nobel per la fisica 2022 per gli esperimenti con fotoni "entangled" (intrecciati) che hanno stabilito la violazione delle disuguaglianze di Bell, facendo da apripista alla scienza dell'informazione quantistica.
Per approfondire questo argomento:
Percorso ScienzaPerTutti: La discontinuità della natura
Diretta Fecebook INFN: https://www.facebook.com/events/5714513065236968/
Articoli di Asimmetrie:
Studi sulle disuguaglianze di Bell sono stati realizzati all'acceleratore Dafne ai Laboratori Nazionali di Frascati dell'INFN con l'esperimento Kloe che ha studiato, in particolare, la produzione di mesoni K entangled.
Il Glossario elaborato da ScienzaPerTutti raccoglie circa 800 voci di termini scientifici!
Scrolla la lista o cerca nel tab predefinito.
La fisica dello sport
di Cecilia Voena
pubblicata su SxT 21 settembre 2022
Lo sport occupa una parte importante delle nostre vite. C’è chi lo pratica, chi partecipa agli eventi sportivi e chi lo guarda in televisione standosene comodamente sul divano. Sorprendentemente, anche le prestazioni sportive più spettacolari possono essere spiegate utilizzando concetti di fisica classica abbastanza semplici. Chi non ha mai ammirato i salti, i tuffi, o i colpi dei campioni di tennis, di calcio e di pallavolo? In questa puntata, spiegheremo alcuni gesti atletici e tecnici degli sport più popolari usando i concetti della fisica di base.
- Autore: Cecilia Voena
- Altre voci: Chiara Piselli
- Regia: Edoardo Massaro
Pagina 2 di 2